
My Way
January 30, 2007

\sometxt: some nice techniques
for placing text labels on graphics

Mojca Miklavec

This will be the abstract - but this is still a DRAFT version of the document. Nei-
ther content nor the design has been finished/polished out. Please report any
bugs/typos/comments/suggestions.

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

1

January 30, 2007 My Way 1

1 Hello world!

In METAPOST, the standard way of placing text on graphics is to use the btex ...
construct as in the following example:

beginfig(1);
draw fullcircle xyscaled (3cm,2cm);
label(btex Hello world! etex, origin);

endfig;
end.

In ConTEXt you would now do the same with::

\startMPcode
draw fullcircle xyscaled (3cm,2cm);
label(\sometxt{Hello world!}, origin);

\stopMPcode

Both approaches should yield equivalent result in this case:

Hello world!

However, the btex ... syntax has so many drawbacks (in both efficiency and
flexibility) that it’s use is strongly discouraged.

There exists yet another possibility to place labels, namely textext("...")1 with
the same hello-world example below.

\startMPcode
draw fullcircle xyscaled (3cm,2cm);
label(textext("Hello world!"), origin);

\stopMPcode

Before Spring 2006 it was so buggy that it was hardly working anywhere and very
soon after Hans & Taco fixed most bugs, a much more efficient \sometxt has been
introduced to replace it. But despite its inefficiency, textext cannot be replaced
trivially by \sometxt in all the cases. For auto-generated strings, loops and macros
it’s still useful.

For an average user there’s really not much left to say about \sometxt, apart from
asking them to use it instead of any other alternative if possible. The rest of the
document is devoted to the curious ones.

documented in the MetaFun manual1

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

2

2 My Way January 30, 2007

2 Some Pitfalls

(I don’t like the section name)

Normally this should be the very last section in the manual, but some default set-
tings need to be changed if you experience problems (or even before you do).

2.1 \runMPgraphicstrue, \runMPTEXgraphicstrue

To be able to use \sometxt properly, you need to have runMPgraphics set to true.2

In order to be able to use textext at all you also need to set \runMPTEXgraphicstrue.

You’ll find the two settings in tex/context/user/cont-sys.rme in your TEXMF
tree. If you want to change these values, uncomment the corresponding two lines
and save the file as cont-sys.tex. That way your settings won’t get lost next time
when you update ConTEXt.

TODO: I have to check if one really has to enable write18 in order to be able to use
\runMPTEXgraphicstrue. Because that would mean that one can only use \sometxt
with write18 enabled. That would be a pitty.

This might be a bug, but without it you’ll get wrong scaling when using more than one text label in a2

picture.

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

3

January 30, 2007 My Way 3

2.2 Color stacks

If you want to use withcolor, you need3

\chardef\TeXtextcolormode\zerocount

The value of \TeXtextcolormode means:

• 0: nothing, withcolor works ok, but nested colors fail
• 1: local color stack ok
• 2: obey color stack (not yet supported)

To see the difference, take a look at the following examples:

\startuseMPgraphic{text color mode}
draw \sometxt{this is \color[red]{red} and blue} withcolor blue;
draw \sometxt{this is \color[red]{red} and black} shifted (4cm,0);

\stopuseMPgraphic

% default
\chardef\TeXtextcolormode\plusone
\useMPgraphic{text color mode}
\color[green]{\useMPgraphic{text color mode}}

\chardef\TeXtextcolormode\zerocount
\useMPgraphic{text color mode}
\color[green]{\useMPgraphic{text color mode}}

this is red and blue this is red and black
this is red and blue this is red and black
this is red and blue this is red and black
this is red and blue this is red and black

This document has been typeset with \chardef\TeXtextcolormode\zerocount as well.3

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

4

4 My Way January 30, 2007

3 textext("not to be thrown away yet")

Most commercials or even manuals tell you only what the product they’re selling is
good for. Here we’ll make an exception and start with something where \sometxt
is not good at all, so we’ll be forced to use the old textext macro for it.

On the first figure there is circle drawn first, followed by a loop which places twelve
tics and numbers4 next to them, each one rotated for i·30◦ in the clockwise (negative)
direction.

\startMPcode
numeric r; r = 1.5cm;
draw fullcircle scaled 2r;
for i=1 upto 12:
draw (origin--down) scaled 4pt shifted (0,r) rotated -30i;
label(textext(decimal i), up scaled .75r rotated -30i);

endfor;
\stopMPcode

1
2
3

4
567

8
9
10

11 12

decimal converts numerical value of the counter i into string, which is then passed
to textext() as an argument.

Passing values to both btex ... etex and \sometxt in such a way is not possible,
that’s why more tricky approaches are needed to achieve the same result. Or, we can
always call btex 1 etex, textext("1") or \sometxt{1} twelve times of course,
with different argument each time.

Placement of numbers is visually bad, but placing them properly would require longer code and4

wouldn’t bring anything to understanding of the example.

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

5

January 30, 2007 My Way 5

The second example shows us how strings can be concatenated together, so that the
counter now takes the role of an index inside a math expression. Also, the calculated
length of the perimeter can be written. That last thing would be the least trivial to
get with \sometxt. It’s probably not impossible to do it5, but this article won’t cover
it.

\startMPcode
numeric r; r = 1cm;
pair v[];
path p;

for i=1 upto 5:
% define the five vertices
v[i] = up scaled r rotated -72i;
% draw labels: v_1, v_2, ... v_5
label(textext("$v_" & decimal i & "$"), v[i] scaled 1.2);

endfor;

% define and draw the pentagon
p = for i=1 upto 5: v[i]-- endfor cycle;
draw p;
% write out the calculated perimeter
draw textext("length: " & decimal (arclength p/1cm) & " cm") shifted

(4cm,0);
\stopMPcode

v1

v2v3

v4

v5

length: 5.87785 cm

If you like challenges, this might be a nice one. If you find a solution, please share it with the ConTEXt5

community.

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

6

6 My Way January 30, 2007

If you want to use textext inside your own macros (which possibly reside in an
external file), you should also use \forceMPTEXcheck{your_macro_name}. This
command triggers a more exhaustive scan of the contents, to assure an additional
TEX run to typeset the label when needed. (I have no idea how to formulate this sen-
tence.)

my_macros.mp:

vardef label_for_vertex(expr n) =
textext("$v_" & decimal n & "$")

enddef

TEX file:

\forceMPTEXcheck{label_for_vertex}

\startMPcode
input my_macros ;
for i=1 upto 6:
draw label_for_vertex(i) shifted ((1cm,0) rotated 60i);

endfor;
\stopMPcode

v1v2

v3

v4 v5

v6

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

7

January 30, 2007 My Way 7

4 \sometxt{Some really nice features}

4.1 Why is \sometxt so much better than textext?

(you may skip this if you want; it’s not finished yet anyway)

• There is one obvious reason: speed.
Processing each graphic needs a separate METAPOST run and processing text in-
side a graphic needs a separate ConTEXt run. Usually the document is processed
twice, which means additional four ConTEXt runs plus some conversions just to
get those two simple(TODO: use better word!) graphics in the previous section.
And all that appears to be extremely slow.
But there are more reasons than just the efficiency.

• document-wide definitions are seen
The fact that textext triggers a new ConTEXt run doesn’t only affect efficiency,
but also the scope of your definitions. Inside of textext you can only use stan-
dard ConTEXt macros since the content is compiled in an isolated environment.
Well, there are some exceptions to the rule, but most of them are just calling for
troubles. There is but even such simple things as definitions with arguments
will fail to work. You can \input a file with definitions however, which might
be slightly more reliable.
TODO: EXAMPLE!

• problems with expansion
TODO: I don’t know how to explain it, but as far as I remember math expressions
(fractions perhaps) never worked as they were supposed to

• less characters to escape
TODO: Assign a problem to write a double quote into textext

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

8

8 My Way January 30, 2007

4.2 Shortcuts

If you need to use the same command inside \sometxt multiple times, you can
define a shortcut for it with \definetextext[name]{\command}. This will make
\sometxt[name]{whatever} equal to \sometxt{\command{whatever}}.

\def\ForThoseWhoReallyHateLongCommands#1%
{\framed[framecolor=blue]{\strut\bs #1}}

\definetextext[xs]{\ForThoseWhoReallyHateLongCommands}

\startMPcode
picture p; p = \sometxt[xs]{Framed title with eXtra Small overhelm};
fill bbox p withcolor .7white;
draw p;
draw \sometxt[xs]{\dots\ and another one} shifted (6cm,-4.5mm);
\stopMPcode

Framed title with eXtra Small overhelm
. . . and another one

4.3 Baseline placement

By default texts are placed on the baseline (which is OK: I guess that this sectio is not
needed).

\startMPcode
vardef place(expr p) =
image(draw p;

draw (xpart llcorner p,0)--(xpart lrcorner p,0);)
enddef;

draw place(\sometxt[d]{depth: baseline on $y=0$}) shifted (-5cm,0);
draw place(\sometxt[n]{no depth: lower bound on $y=0$});

\stopMPcode

depth: baseline on y = 0 no depth: lower bound on y = 0

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

9

January 30, 2007 My Way 9

4.4 Accessing text labels from metapost

\sometxt can be used inside inline graphics (for example inside \startMPcode,
\startuseMPgraphic etc.), but not in plain .mp files or in some more complex
cases. The following example shows how to define text labels and how to access
them from metapost.

\startTeXtexts
\TeXtext{3}{Hello}
\TeXtext{202}{world!}

\stopTeXtexts

\startMPcode
% this could be written in an external metapost file
draw sometxt(3) withcolor red;
draw sometxt(202) shifted (1cm,0) withcolor blue;

\stopMPcode

Hello world!

Watch out. \sometxt replaces what has previously been defined with \TeXtext,
so the following example is not really a bug. If you want to prevent clashes, use
higher numbers in arguments.

\startTeXtexts
\TeXtext{2}{Hello}
\TeXtext{1}{world!}

\stopTeXtexts

\startMPcode
% this could be written in an external metapost file
draw sometxt(2) withcolor red;
draw sometxt(1) shifted (1cm,0) withcolor blue;
draw \sometxt{bug!} shifted (3cm,0);

\stopMPcode

Hello bug! bug!

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

10

10 My Way January 30, 2007

4.5 Loops

Let’s see how the “textext” examples can be rewritten using sometxt with prede-
fined labels:

\startTeXtexts
% equivalent to \TeXtext{i}{i}
\dorecurse{12}{\TeXtext{\recurselevel}{\recurselevel}}

\stopTeXtexts

\startMPcode
numeric r; r = 1.5cm;
draw fullcircle scaled 2r;
for i=1 upto 12:
draw (origin--down) scaled 4pt shifted (0,r) rotated -30i;
label(sometxt(i), up scaled .75r rotated -30i);

endfor;
\stopMPcode

1
2

3

4
567

8

9

10
11 12

\startTeXtexts
% equivalent to \TeXtext{i}{v_i}
\dorecurse{5}{\TeXtext{\recurselevel}{v_{\recurselevel}}}

\stopTeXtexts

\startMPcode
numeric r; r = 1cm;
pair v[];
path p;

for i=1 upto 5:
% define the five vertices
v[i] = up scaled r rotated -72i;
% draw labels: v_1, v_2, ... v_5
label(sometxt(i), v[i] scaled 1.2);

endfor;

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

11

January 30, 2007 My Way 11

% define and draw the pentagon
p = for i=1 upto 5: v[i]-- endfor cycle; draw p;

\stopMPcode

v1

v2v3

v4

v5

A careful reader will notice a subtle difference in the two graphics: the one cre-
ated with textext uses Latin Modern (default font), while the one created with
\sometxt uses the document font. Those who want to use the same font with
textext should use something like this to the document preamble:

\startMPenvironment[global]
\usetypescript[palatino][ec]
\setupbodyfont[palatino,10pt]

\stopMPenvironment

4.6 currentcolor

When no color is specified, metapost uses black by default. If you want
to draw something in the same color as the surrounding text, you can use
\MPcolor{currentcolor}.

\startuseMPgraphic{current color}
fill fullcircle scaled 1cm shifted (-5mm,-3mm);
fill fullcircle scaled 1cm withcolor \MPcolor{currentcolor};

\stopuseMPgraphic

\hbox{ black circle: \useMPgraphic{current color}
\color[blue]{ blue circle: \useMPgraphic{current color}}}

black circle: blue circle:

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

12

12 My Way January 30, 2007

4.7 More complex example

(Needs more comments.)

\defineconversion
[MySym]
[\star,\circ,\bullet]

% define the labels
\startTeXtexts
\doloop{

\doifelseconversionnumber{MySym}{\recurselevel}
{\TeXtext{\recurselevel}{\convertnumber{MySym}{\recurselevel}}}
{\exitloop}

}
\stopTeXtexts

% remember the number of different symbols
\doloop{

\doifelseconversionnumber{MySym}{\recurselevel}
{\edef\numberofsymbols{\recurselevel}}
{\exitloop}

}

\startMPcode
for i=0 upto 10:

draw sometxt(i mod \numberofsymbols + 1)
shifted ((right scaled 8i) rotated 28i);

endfor;
\stopMPcode

?◦
•

?
◦

•

?

◦

•

?
◦

\s
om

et
xt

:s
om

e
ni

ce
te

ch
ni

qu
es

fo
r

pl
ac

in
g

te
xt

la
be

ls
on

gr
ap

hi
cs

\som
etxt:som

e
nice

techniquesfor
placing

textlabels
on

graphics

13

January 30, 2007 My Way 13

5 Feature requests

5.1 Shortcuts with optional parameters

\sometxt[my][iwona,20pt]{How can this be typeset with 20pt iwona}
\sometxt[my]{and this with the document font?}

% should become equivalent to
\sometxt{\switchtobodyfont[iwona,20pt]\strut How can this ...}

5.2 rename \sometxt to \textext

5.3 make \TeXtextcolormode default to 0

6 Summary

btex ... etex deprecated:
inefficient,
not flexible

A METAPOST command.
\sometxt should be used in ConTEXt instead.

textext("...") inefficient,
but flexible

A MetaFun command, which enables concate-
nation of strings and thus dynamic generation
of labels.

\texttext{...} inefficient,
not flexible

This is only a wrapper around textext(...).
\sometxt should be used instead;

\sometxt{...} efficient,
not flexible

The recommended command to typeset text,
unless dynamic labels are needed.

sometxt(number) low-level Used to access labels, previously defined with
\TeXtext{number}{...}

\startTeXtexts
\TeXtext{number}{...}

\stopTeXtexts

For advanced usage only: to define labels that
can be drawn later with sometxt(number).

